His formula is correct for $h \neq 0$. If unify both cases ($h=0$ and $h \neq 0$) and simplify the expression the final value of Gamma is the following:

$$
\begin{equation*}
\Gamma=\frac{2 e^{-r_{f} \tau}}{x \sigma \sqrt{\tau}} n\left(b_{1}\right)-\phi \eta e^{-r_{d} \tau}\left(\frac{x}{K}\right)^{-h} \frac{1-h}{x} N\left(-\phi \eta\left(b_{1}-h \sigma \sqrt{\tau}\right)\right) \tag{1}
\end{equation*}
$$

So, the only missprint in Your formula is that the emphasized (with red color above) factor is missing.

